Large Scale Functional Connectivity for Brain Decoding

نویسندگان

  • Orhan Firat
  • Itir Onal
  • Emre Aksan
  • Burak Velioglu
  • Ilke Oztekin
  • Fatos T. Yarman Vural
چکیده

Functional Magnetic Resonance Imaging (fMRI) data consists of time series for each voxel recorded during a cognitive task. In order to extract useful information from this noisy and redundant data, techniques are proposed to select the voxels that are relevant to the underlying cognitive task. We propose a simple and efficient algorithm for decoding the brain states by modelling the correlation patterns between the voxel time series. For each stimulus during the experiment, a separate functional connectivity matrix is computed in voxel level. The elements in connectivity matrices are then filtered out by making use of a minimum spanning tree formed using a global connectivity matrix for the entire experiment in order to reduce dimensionality. For a recognition memory experiment with nine subjects, functional connectivity matrices are computed for encoding and retrieval phases. The class labels of the retrieval samples are predicted within a k-nearest neighbour space constructed by the traversed entries in the functional connectivity matrices for encoding samples. The proposed method is also adapted to large scale functional connectivity tasks by making use of graphics boards. Classification performance in ten categories is comparable and even better compared to both classical and enhanced methods of multi-voxel pattern analysis techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoding subject-driven cognitive states with whole-brain connectivity patterns.

Decoding specific cognitive states from brain activity constitutes a major goal of neuroscience. Previous studies of brain-state classification have focused largely on decoding brief, discrete events and have required the timing of these events to be known. To date, methods for decoding more continuous and purely subject-driven cognitive states have not been available. Here, we demonstrate that...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

Brain Functional Connectivity Changes During Learning of Time Discrimination

The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...

متن کامل

Computer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity

Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...

متن کامل

Feature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI

Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014